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Abstract

The steady-state response of a uniform beam placed on an elastic foundation and subjected to a
concentrated load moving with a constant speed has been investigated. The foundation is modeled by using
one and two parameters. The mathematical form of the solution is justified by Fourier transform. It is
observed that the steady state is not attained at supercritical speed of the load in the ideal undamped case.
Numerical results are presented for maximum settlement, uplift and bending moment in the beam. The
effect of difference in the modeling of the foundation is shown to be insignificant.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The increased speeds of modern trains are normally accompanied by increased transient
movement of rail and ground, which may cause noticeable vibration and large deflection in the
rail track along with structure-borne noise in the nearby buildings. For modern high-speed trains
these transient movements are especially high when train speeds approach certain critical
velocities in the track-ground system. There are two main critical wave velocities in the track
ground system: the velocity of Rayleigh surface wave in the ground and the minimum phase
velocity of the bending wave propagating in the track supported by the ballast, the latter velocity
see front matter r 2005 Elsevier Ltd. All rights reserved.
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being referred to as the track critical velocity. Modern high-speed trains, especially in the
case of very soft soil, can easily exceed both these velocities. Krylov [1] predicted that if
the train velocity (v) exceeds the Rayleigh wave velocity in the supporting soil, then a ground
vibration boom occurs which is associated with a very large increase in generated
ground vibrations, as compared with the case of conventional trains. This phenomenon is
similar to sonic boom for aircraft crossing the sound barrier. As a result, the structures over
which the trains move are subjected to larger dynamic stresses and wave radiation effects become
more and more important for the development of high speed train tracks. It is thus necessary to
analyze and understand the behavior of these structures and design them properly against
the additional stress. A beam resting on a soil mass can be conveniently used to represent the
track of railway and rocket testing facilities, as well as the pavements used as roadways and
in airports. Such a continuum model is often used to represent flexible structures that are
essentially one dimensional in geometry. The ground may be represented by foundation models
like the one parameter Winkler model or the two parameter models developed by researchers
like Pasternak [2] and Vlasov and Leotiev [3] or higher order models like those developed by
Kerr [4] and Reissner [5]. In the present analysis, Pasternak [2] model has been used to represent
the ground.
The differential equation governing the system of moving loads on beams on elastic foundation

can be obtained by considering the dynamic equilibrium of beam resting on ground and
undergoing transverse vibrations. Depending upon the physical system, either an Euler–Bernoulli
beam or a Timoshenko beam may be considered for this purpose. In the present analysis, an
Euler–Bernoulli beam has been considered, because the depth and hence the rotary inertia of the
track can be considered small as compared to the translational inertia.
The analytical solution of the problem of moving load has been solved by only a few researchers

[6,7]. Kenny [7] included the effect of damping and obtained amplification factors to study an
infinite beam on Winkler foundation. The beam was idealized using the Euler–Bernoulli beam
theory and the analytical solution for the steady response of the beam was obtained. The velocity
of propagation of free waves for the undamped case was obtained and it was shown that if the
velocity of traveling load is equal to this free wave velocity, then displacement increases without
bound resulting in resonance. He also investigated the effect of viscous damping and discussed the
limiting case of no damping.
Solution for the same problem was also obtained by Fryba [6]. He analyzed the response of an

unbounded elastic body subjected to a moving load using the technique of triple Fourier integral
transformation. From the closed form solution distinct differences can be obtained between the
responses in the subsonic, transonic and supersonic cases. Fryba [6] presented a detailed solution
for the problem of a constant moving load along an infinite beam on an elastic foundation
considering all possible speeds and values of viscous damping. Based on the concept of equivalent
stiffness of the supporting structures, a critical speed was identified for the moving load, at which
the response of the undamped beam becomes infinite. For load speed lower than the critical speed,
the largest amplitude of wave occurs near the point of loading. On the other hand, for load speed
higher than the critical speed, the waves moving ahead of the load are smaller in amplitude and
wavelength than those behind the load.
Sun [8] presented a closed form solution, for the response of a beam resting on a Winkler

foundation subjected to a moving line load, by means of two-dimensional Fourier transform and
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using Green’s function. The response of the beam is studied for the damped case at subcritical
speeds.
In the present analysis, an infinite Euler–Bernoulli beam of constant cross-section resting on an

elastic foundation is considered. The beam and foundation are assumed to be homogeneous and
isotropic. The foundation is modeled using both one parameter and two parameters. The beam is
subjected to a constant point load moving with a constant speed along the beam. An effort has
been made to find the solution of the governing differential equation analytically with and without
viscous damping. The equations governing different responses such as beam deflection, bending
moment and shear force have been obtained in closed form for the undamped case. For the case
where damping is also present, numerical results are obtained for both underdamping and
overdamping cases.
2. Modeling of beams on elastic foundation subjected to moving loads

The differential equation of motion for an Euler–Bernoulli beam, resting on a two-parameter
foundation and subjected to a moving load is given by:

EI
q4w
qx4
� k1

q2w
qx2
þ kwþ r

q2w
qt2
þ c

qw

qt
¼ Pðx; tÞ, (1)

where w ¼ w(x, t) is the transverse deflection of the beam (m), E the Young’s modulus of beam
material (N/m2), I the second moment of area of the beam cross section about its neutral axis
(m4), k the spring constant (first parameter) of the soil per unit beam length (N/m2), k1 the shear
parameter (second parameter) of the soil (N), r the mass per unit length of the beam (kg/m), c the
coefficient of viscous damping per unit length of the beam (N s/m2), P(x, t) the applied moving
load per unit length (N/m), x the space coordinate measured along the length of the beam (m), t
the time (s).
If a concentrated load P moves with a constant velocity v, then Pðx; tÞ ¼ Pdðx� vtÞ where d is

the Dirac’s delta function and x is measured from the location of the load at t ¼ 0.
Eq. (1) may be used for a one parameter foundation model by neglecting the term involving the

shear parameter k1. While using the two parameter model, the values of k and k1 are based on the
constrained deformation of an elastic layer given by Vlazov and Leotiev [3]. For a single layer of
thickness H with a linear variation of normal stresses, k and k1 per unit width are given,
respectively, by

k̄ ¼
Es

Hð1þ nsÞð1� 2nsÞ
; k̄1 ¼

EsH

6ð1þ nsÞ
. (2)

The values of Es (Young’s modulus) and ns (Poisson’s ratio) can be determined from triaxial tests.
The assumptions made in deriving Eq. (1) are:
(i)
 The beam is initially straight.

(ii)
 The beam and soil materials are linearly elastic with same modulli in tension and

compression.

(iii)
 Structural deformations are small.
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(iv)
 Shear deformation and rotary inertia are negligible.

(v)
 Inertial forces of the vehicles are much smaller than its dead weight (force of constant

magnitude).
3. Infinite beam on a two parameter foundation model

Divide both sides of Eq. (1) by EI to get

q4w
qx4
�

k1

EI

q2w
qx2
þ

k

EI
wþ

r
EI

q2w
qt2
þ

c

EI

qw

qt
¼

P

EI
dðx� vtÞ. (3)

Now define

a ¼
r

2EI
; b2

¼
k

EI
; c1 ¼

k1

2EI
and d ¼

c

EI

when Eq. (3) can be written as

q4w
qx4
� 2c1

q2w
qx2
þ b2wþ 2a

q2w
qt2
þ d

qw

qt
¼

P

EI
dðx� vtÞ. (4)

For an infinite beam in the steady state, it is shown in the appendix that the response w becomes a
function of (x�vt), rather than of (x, t). Consequently, Eq. (4) can be put in a homogeneous form
and the external load can be treated as a jump in the shear force and can be included in the
boundary condition. Thus writing x ¼ x� vt, Eq. (4) is reduced to the following ordinary
differential equation:

d4w

dx4
� 2c1

d2w

dx2
þ b2wþ 2av2

d2w

dx2
� dv

dw

dx
¼ 0. (5)

Let us assume that the solution of the above equation as

w ¼ emx

which after substituting in Eq. (5) yields

m4 � 2c1m
2 þ b2

þ 2av2m2 � dvm ¼ 0. (6)

3.1. Underdamped case

Defining critical damping coefficient dcr ¼ 2
ffiffiffi
2
p

b
ffiffiffi
a
p

; dodcr constitutes the underdamped case.
It can be shown, that with underdamping, the four roots of Eq. (6) are of the form:

m1 ¼ � pþ iq,

m2 ¼ � p� iq,

m3 ¼ pþ ir,

m4 ¼ p� ir, ð7Þ

where p, q and r are real positive numbers.
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Thus solution of the differential equation (5) is given by

w1ðxÞ ¼ e�px A cos qxþ B sin qx½ � for x40 to ensure that w1 vanishes as x!1, (8)

w2ðxÞ ¼ epx C cos rxþD sin rx½ � for xo0 to ensure that w2 vanishes as x!�1.

The wavelength of the front wave is given by 2p/q and that for the rear wave is given by 2p/r, with
q4r. The boundary conditions are

w1ð0Þ ¼ w2ð0Þ;

w01ð0Þ ¼ w02ð0Þ;

w001ð0Þ ¼ w002ð0Þ;

w0001 ð0Þ � w0002 ð0Þ ¼
P

EI
;

(9)

where the prime denotes differentiation with respect to x. Using Eqs. (8) and (9) one gets

A� C ¼ 0, (10)

�2pAþ Bq�Dr ¼ 0, (11)

r2 � q2
� �

A� 2pqB� 2prD ¼ 0, (12)

p 3q2 � 2p2 þ 3r2
� �

Aþ q 3p2 � q2
� �

Bþ r r2 � 3p2
� �

D ¼
P

EI
, (13)

to solve for the four constants A,B,C and D. The values of A,B,C and D have been solved
analytically in the present study.

3.2. Overdamped case

For the overdamped case, i.e., d4dcr, the roots of Eqs. (6) are of the form:

m1 ¼ � pþ iq,

m2 ¼ � p� iq,

m3 ¼ r,

m4 ¼ s, ð14Þ

where p, q, r and s are real positive numbers.
In this case the solution of Eq. (5) can be written as

w1 ¼ e�px A cos qxþ B sin qx½ � for x40,

w2 ¼ Cerx þDesx for xo0. ð15Þ



ARTICLE IN PRESS

A.K. Mallik et al. / Journal of Sound and Vibration 291 (2006) 1148–1169 1153
The four boundary conditions are the same as given by Eq. (9). Using Eqs. (9) and (15), one gets

A� C �D ¼ 0, (16)

�pAþ qB� rC � sD ¼ 0, (17)

p2 � q2
� �

A� 2pqB� r2C � s2D ¼ 0, (18)

p 3q2 � p2
� �

Aþ q 3p2 � q2
� �

B� r3C � s3D ¼
P

EI
. (19)

The values of the constants A,B,C, and D have been solved analytically in the present study.

3.3. Undamped case (velocity less than critical)

We define a critical velocity of the moving load (see Section 3.4), vcr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ c1Þ=a

p
and

consider the case vovcr. In the absence of damping (d ¼ 0), Eq. (6) is reduced to the following
bi-quadratic equation:

m4 þ 2av2 � 2c1
� �

m2 þ b2
¼ 0. (20)

The roots of the above equation are

m2 ¼ � av2 � c1
� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
av2 � c1ð Þ

2
� b2

q
, (21)

which can also be written as

m2 ¼ � av2 � c1
� �

� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � av2 � c1ð Þ

2
q

, (22)

with av2
�c1ob1, i.e., vo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ c1Þ=a

p
or vovcr.

Now substitute

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� av2 � c1ð Þ

2

r
and b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ av2 � c1ð Þ

2

r
. (23)

Thus, the four roots of Eq. (20) will be in the form of complex conjugates and can be written as

m1 ¼ aþ ib,

m2 ¼ a� ib,

m3 ¼ � aþ ib,

m4 ¼ � a� ib. ð24Þ

It is more suitable to assume the solution in the form of sin and cos functions with exponential
term.
Thus, the solution of Eq. (5) with d ¼ 0, can be written as

w1ðxÞ ¼ e�ax C1 sin bxþ C2 cos bx½ � þ eax C3 sin bxþ C4 cos bx½ � for x40,

w2ðxÞ ¼ e�ax D1 sin bxþD2 cos bx½ � þ eax D3 sin bxþD4 cos bx½ � for xo0. ð25Þ
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To ensure zero deflection at infinity the solutions must be in the form (as a40)

w1ðxÞ ¼ e�ax C1 sin bxþ C2 cos bx½ � for x40;

w2ðxÞ ¼ eax D3 sin bxþD4 cos bx½ � for xo0: ð26Þ

The boundary conditions are still given by Eqs. (9).
After solving Eqs. (26) with the help of Eqs. (9), the final solution is obtained as

w1ðxÞ ¼
Pe�ax

4EIbab
a sin bxþ b cos bx½ � for x40,

w2ðxÞ ¼
Peax

4EIbab
b cos bx� a sin bx½ � for xo0. ð27Þ

The derivation of Eqs. (27) through transform method is included in Appendix A. The wavelength
for both front and rear waves is given by 2p/b and the response is symmetrical about the point of
loading.

3.4. Critical velocity

If the velocity of the load v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ c1Þ=a

p
then a ¼ 0 and consequently both w1(x) and w2(x)

shoot up to infinity. This velocity is called the critical velocity, given by

vcr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ c1

a

r
. (28)

In terms of original system parameters for the two parameter foundation model

vcr2 ¼

ffiffiffiffiffiffiffiffiffiffiffi
4EIk
p

þ k1

r

" #1=2
. (29)

3.5. Undamped case (velocity greater than critical)

For v4vcr, the roots of Eq. (20) can be written as

m2 ¼ � av2 � c1
� �

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
av2 � c1ð Þ

2
� b2

q
and

m2 ¼ � av2 � c1
� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
av2 � c1ð Þ

2
� b2

q
(30)

The four roots of Eq. (30) are as follows:

m1 ¼ iq,

m2 ¼ � iq,

m3 ¼ ir,

m4 ¼ � ir, ð31Þ
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where q and r are given by

q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
av2 � c1 þ bð Þ

2

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
av2 � c1 � bð Þ

2

r
(32)

and

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
av2 � c1 þ bð Þ

2

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
av2 � c1 � bð Þ

2

r
, (33)

with q4r.
The method now runs into essential difficulty, as also noted by Kenny [7]. In the absence of the

real part of roots (m’s), one cannot choose roots separately for x40 and xo0 as was done for the
underdamped case. Thus, if one writes

w1ðxÞ ¼ C1 sin qxþ C2 cos qxþ C3 sin rxþ C4 cos rx for x40 (34)

and

w2ðxÞ ¼ D1 sin qxþD2 cos qxþD3 sin rxþD4 cos rx for xo0, (35)

then eight constants C1–C4, D1–D4 cannot be determined using only four boundary conditions
given by Eq. (9). Furthermore, the deflections at x!�1 do not die down to zero. Therefore,
one can conclude that for v4vcr the steady state (as assumed in the solution procedure) is never
attained in perfectly undamped case. In a single degree-of-freedom, undamped system the steady
state is never attained when the forcing frequency coincides with the natural frequency. In the
present case, the steady state is never attained for all speeds v4vcr.
The response of the undamped beam for v4vcr can be thought of as the limiting case of the

underdamped beam with d-0. Thus, using Eqs. (8) and (33) one can write

w1ðxÞ ¼ A cos qxþ B sin qx for x40 (36)

and

w2ðxÞ ¼ C cos rxþD sin rx for xo0. (37)

However, still one gets undiminished harmonic waves both towards left and right violating w-0
as x!�1:
4. Results and discussion

The data assumed in the present work are given in Table 1. Numerical results are obtained
using the analysis presented in Section 3. The term amplification factor is defined as the ratio of
maximum value of responses (such as deflection, bending moment and shear force, etc.) in
dynamic case to that of the static case. Amplification factors can be written as

Deflection Amplification Factor ¼
Maximum Deflection ðDynamicÞ

Maximum Deflection ðStaticÞ
,

Bending Moment Amplification Factor ¼
Maximum Bending Moment ðDynamicÞ

Maximum Bending Moment ðStaticÞ
.
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A very important term, the coefficient of characteristic wavelength in the static case can be written
as [7]

l ¼
k

4EI

� �1=4
¼

ffiffiffiffiffiffiffiffi
b=2

p
ðm�1Þ.
Table 1

Soil and beam parameters

Parameters Assumed values

r (kg/m) 25

EI (Nm2) 1.75� 106

K (N/m2) 40.78� 105

k1 (N) 666875

P (N/m) 93.36� 103

Es (N/m2) 3.73� 106

nS 0.4

Fig. 1. Normalized deflection vs. normalized distance with damping for velocity ratio ¼ 0.25 and velocity ratio ¼ 0.50,

damping ¼ 0.0005 for two parameter model.
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The distance along the beam, i.e., the x-axis has been normalized by multiplying the distance
(ahead and behind) from the load by l and the y-axis has been normalized by dividing the
responses (deflection, bending moment and shear force) obtained by the maximum value of these
in the static case (i.e. at v ¼ 0).
The sign convention, which is followed in the present study, can be shown schematically as

Shear Force Bending Moment 

+ + 

The amount of damping is expressed as percentage of the critical damping. The velocity of the
load is expressed by the ratio v/vcr.
Figs. 1–7 show the deflection of the beam as a function of the distance from the load for various

values of damping, speed of the load (subcritical, critical and supercritical) and two types of
foundations. The negative value of the deflection signifies downward deflection with the moving
load acting downward signifying settlement whereas the positive deflection implies uplift. The
maximum deflection is somewhat more for the two parameter foundation as compared to that for
the one parameter foundation. The difference decreases from about 6% to 3% as the velocity
Fig. 2. Normalized deflection vs. normalized distance with damping for velocity ratio ¼ 1.5 and 2.0, damping

ratio ¼ 0.0005 for two parameter model.
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damping ¼ 0.30 for two parameter model.
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ratio increases from 1 to 2. With increase in damping, the difference in the response of two types
of foundations decreases (see Figs. 4 and 5).
At very low damping, the maximum settlement occurs close to the load and symmetrically dies

down on either side of it if vovcr. A small amount of uplift occurs at distances away from the load
(Fig. 1). From Fig. 2, it can be concluded that for the supercritical velocity regime, both the
maximum settlement and uplift decrease with increasing speed. The point of maximum settlement
occurs behind the load and the distance of this point from the load increases with increasing
speed. Most of the deflection occurs behind the load as the energy of deformation in the beam
foundation system propagates with an average speed (considering all frequencies and
wavelengths) lower than that of the load. At a distance away from the load, the deflection
(consisting of both settlement and uplift) dies down, the rate of which depends on the amount of
damping.
Comparing Figs. 1 and 3 for v/vcr ¼ 0.5, one can observe that, as expected, the increased

damping decreases the maximum settlement to some extent. However, the maximum uplift is
hardly affected. The point of maximum settlement shifts behind the load and the amount of shift
increases with increasing speed.
Figs. 4 and 5 show that for the parameter values considered in this paper, depending on the

extent of damping, the maximum settlement is about 3.5–6% more for the two parameter
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Fig. 4. Normalized bending moment vs. normalized distance without damping for velocity ratio ¼ 0.99 for one and

two parameter models.

A.K. Mallik et al. / Journal of Sound and Vibration 291 (2006) 1148–1169 1159
foundation than that with the one parameter foundation. Numerical results (not shown here)
indicated that this amount of increase in the maximum settlement increases with increasing speed.
Comparison of Figs. 4 and 5 indicates that with increased damping, the deflection dies down
rather rapidly with increasing distance from the loaded point.
The variation of bending moment along the beam is shown in Fig. 7 for subcritical and critical

velocities and in Fig. 8 for supercritical velocities. It is clearly seen that the maximum negative
bending moment occurs at a point shifted ahead of the load and the amount of shifting decreases
with increasing speed. The maximum positive bending moment however occurs near the load so
long as vovcr and shifts to ahead of the load for supercritical velocities. For subcritical velocity,
the bending moment distribution is almost symmetrical about the load, whereas for supercritical
velocities, the bending moment decreases monotonically behind the load and assumes a high value
just ahead of the load and then damps out in an oscillatory fashion.
The variation of dynamic amplification for various quantities such as settlement, uplift, sagging

bending moment (ahead, behind and at the load) with increasing speed are shown in Figs. 9–13.
Both under and overdamped situations are included. It can be seen that in general, the curves are
similar in nature to those of the frequency response curves of a single degree-of-freedom vibratory
system with the critical speed being analogous to the resonance frequency.
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Fig. 5. Normalized deflection vs. normalized distance with damping for velocity ratio ¼ 1.0 damping ratio ¼ 0.30, for

one and two parameter models.
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5. Conclusions

The major conclusions of the present study are as follows:
1.
 In the ideal situation of no damping, the steady state in the response is never attained for
supercritical speed of the moving load.
2.
 At supercritical speeds of the load, significant deflection occurs behind the load, but bending
moment is higher ahead of the load.
3.
 The point of maximum deflection shifts behind the load with increasing speed and
damping.
4.
 The variation of dynamic amplification factors (for various parameters like settlement,
uplift, bending moment) with speed of moving load resembles the frequency response curve of a
single degree-of-freedom vibratory system. The critical speed is analogous to resonance in the
latter case. The peaks in both these kinds of plots are controlled in a similar fashion by
damping.
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Fig. 6. Normalized deflection vs. normalized distance with damping for velocity ratio ¼ 1.5 and 2.0, damping

ratio ¼ 0.30, for two parameter model.
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Appendix A

In this appendix the form of the steady-state solution w(x�vt) is justified by using Fourier
transform. Towards this end, for simplicity k1 ¼ 0 and c ¼ 0 are used, when the equation of
motion reduces to

EI
q4w
qx4
þ kwþ r

q2w
qt2
¼ Pd x� vtð Þ. (A.1)

Define b2
¼ k=EI , a ¼ r=2EI as in Section 3, to get

q4w
qx4
þ b2wþ 2a

q2w
qt2
¼

P

EI
dðx� vtÞ. (A.2)

Let

w� ¼

Z 1
�1

w x; tð Þe�igx dx (A.3)



ARTICLE IN PRESS

Fig. 7. Normalized bending moment vs. normalized distance with damping for velocity ratio ¼ 0.5 and velocity

ratio ¼ 1.0, damping ratio ¼ 0.30 for two parameter model.
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and

w x; tð Þ ¼
1

2p

Z 1
�1

w� g; tð Þeigx dg (A.4)

constitute a Fourier transform pair. Multiplying both sides of Eq. (A.2) by e�igx and
integrating by parts over x from �N to+N and assuming w and its space derivatives
vanishing at x ¼ �1, one gets

a4w� þ b2w� þ 2a
d2w�

dt2
¼

P

EI
e�igvt. (A.5)

The steady-state solution is given by only the particular integral of Eq. (A.5). The complimentary
function, i.e., the solution of the homogeneous part (i.e., with right-hand side of Eq. (A.5) equal to
zero) dies down in the presence of slightest damping (though neglected here).
Substituting w� ¼W �e�igvt in Eq. (A.5), one gets

ðg4 þ b2
� 2avg2v2ÞW � ¼

P

EI
, (A.6)
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Fig. 8. Normalized bending moment vs. normalized distance with damping for velocity ratio ¼ 0.5 and 1.0, damping

ratio ¼ 0.30 for two parameter model.
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or

W � ¼
P

EI

1

g4 � 2av2g2 þ b2

� �
, (A.7)

or

w� ¼
P

EI

1

g4 � 2av2g2 þ b2

� �
e�igvt. (A.8)

Thus from Eq. (A.4), one gets

w x; tð Þ ¼
P

EI

1

2p

Z 1
�1

eig x�vtð Þ

g4 � 2av2g2 þ b2
dg. (A.9)

The integral in Eq. (A.9) is evaluated by contour integration [9] as discussed below.

w x; tð Þ ¼ ðP=EIÞð1=2pÞ2pi
X

residues at four simple poles: (A.10)
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Fig. 9. Amplification factor for deflection (settlement) behind the load for two parameter model.
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A.1. Residue calculation

Let

q gð Þ ¼ g4 � 2av2g2 þ b2. (A.11)

Poles at g:

q gð Þ ¼ 0) g4 � 2av2g2 þ b2 ¼ 0. (A.12)

Therefore,

g21;2 ¼ av2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
av2ð Þ

2
� b2

q
. (A.13)

Assume v2ob/a where the critical velocity is given by v2cr ¼ b=a:
For, vovcr

g21 ¼ av2 þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � av2ð Þ

2
q

(A.14)
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Fig. 10. Amplification factor for deflection (settlement) ahead the load for two parameter model.
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and

g22 ¼ av2 � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � av2ð Þ

2
q

. (A.15)

From Eq. (A.14) let the two roots of g be

g1 ¼ bþ ia (A.16)

and

g3 ¼ �ðbþ iaÞ, (A.17)

where

a2 þ b2 ¼ b, (A.18)

b2 � a2 ¼ av2. (A.19)
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Fig. 11. Amplification factor for deflection (uplift) ahead the load for two parameter model.
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Solving Eqs. (A.18) and (A.19)

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ av2

2

r
; a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� av2

2

r
. (A.20)

It should be noted that the same values of a and b are obtained from Eqs. (23) in Section 3 with
c1 ¼ 0 (as k1 ¼ 0). Similarly the other two roots for g from Eq. (A.15) are

g2 ¼ �bþ ia (A.21)

and

g4 ¼ b� ia. (A.22)

Thus, the four poles are as shown in Fig. A1, two each on either side of the real axis.
For xð¼ x� vtÞ40, one considers the contour C1 and

wðx; tÞ ¼ iP=EI Residue at g1 þResidue at g2
� �

¼
iP

EI

eig1x

g1 � g2
� �

g1 � g3
� �

g1 � g4
� �þ eig2x

g2 � g1
� �

g2 � g3
� �

g2 � g4
� �

" #
. ðA:23Þ
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Fig. 12. Amplification factor for deflection (settlement) under the load for two parameter model.
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Substituting gi’s in terms of a and b we finally get

w x; tð Þ ¼
Pe�ax

4EIbab
b cos bxþ a sin bx½ �. (A.24)

Similarly for xo0, considering the contour C2 (going from +N to �N on the real axis in order
to travel in the counter-clockwise direction along the contour).

wðx; tÞ ¼
iP

EI
Residue at g3 þResidue at g4
� �

¼
Peax

4EIbab
b cos bx� a sin bx½ �. ðA:25Þ

Thus we note that the steady-state solution is a function of (x�vt) as assumed in Section 3.
Moreover, for the undamped beam Eq. (27) is same as Eqs. (A.24) and (A.25) for x40 and xo0,
respectively. For v4vcr, i.e. v24b/a, Eq. (A.13) indicates that the values gi’s are all real. Thus all
the poles lie on the real axis and consequently, the (real) integral corresponding to Eq. (A.9) does
not exist [9]. So in the absence of damping for v4vcr, the steady-state response of the form
suggested by Eq. (A.6) does not exist. In such a case, there is no justification of neglecting the
complimentary function of the solution of Eq. (A.6).
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Fig. 13. Amplification factor for bending moment (sagging) under the load for two parameter model.

Fig. A1. Position of poles.
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